Rice University Logo
Arizona State University Logo
University of Texas El Paso Logo
Yale University Logo
NEWT is supported by the National Science Foundation (NSF) award #EEC-1449500
 
Privacy Policy
  • Wix Twitter page
  • Wix Facebook page
  • LinkedIn Social Icon
  • RSS Social Icon
  • Instagram Social Icon
  • SoundCloud Social Icon

 PUBLICATIONS

Accepted versions of articles will be available to NEWT Center members by logging into the membership portion of our website.

2015-2016 Reporting Year

 

Thrust 1

 

(1)      Zhao, H.; Wang, L.; Hanigan, D.; Westerhoff, P.; Ni, J. Novel Ion-Exchange Coagulants Remove More Low                  Molecular Weight Organics than Traditional Coagulants. Environ. Sci. Technol. 2016, acs.est.6b00635.

           http://pubs.acs.org/doi/abs/10.1021/acs.est.6b00635

 

(2)      Loeb, S.; Hofmann, R.; Kim, J.-H. Beyond the Pipeline: Assessing the Efficiency Limits of Advanced                          Technologies for Solar Water Disinfection. Environmental Science & Technology Letters 2016, 3 (3), 73–                80.

 

Thrust 2

 

 

(1)      Werber, J. R.; Deshmukh, A.; Elimelech, M. The Critical Need for Increased Selectivity, Not Increased Water            Permeability, for Desalination Membranes. Environ. Sci. Technol. Lett. 2016.

           http://pubs.acs.org/doi/abs/10.1021/acs.estlett.6b00050

 

Thrust 3

 

(1)      Yu, C.; Li, X.; Zhang, N.; Wen, D.; Liu, C.; Li, Q. Inhibition of biofilm formation by d-tyrosine: Effect of bacterial            type and d-tyrosine concentration. Water Research 2016, 92, 173–179.

           http://www.sciencedirect.com/science/article/pii/S0043135416300367

 

Lay Summary: "Bacterial biofouling is a persisting problem in membrane systems that not only deteriorates membrane performance but also shortens membrane lifespan. D-Tyrosine showed potential in combating biofilm formation in membrane systems without damaging membrane material and bacteria inactivation. We evaluated the impact of D-tyrosine in large range of concentrations on biofilm formation in both Gram positive and Gram negative bacteria as well as in different biofilm forming stages. D-Tyrosine is able to inhibit bioiflm formation at concentration as low as 5 nM. The biofilm inhibition effect correlates to D-tyrosine concentration non-monotonically with nano molar and hundreds of micro molar being more effective than the intermediate concentrations. The production of key components in biofilms including protein and polysaccharides are also affected differently, depending on D-tyrosine concentration and bacterial type."

 

Impact statement: "We have shown the effectiveness of D-tyrosine at low concentrations, which allows large-scale applications in water treatment process. Our results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications."

 

(2)      Zhang, P.; Kan, A. T.; Tomson, M. B. Enhanced transport of novel crystalline calcium-phosphonate scale                inhibitor nanomaterials and their long term flow back performance in laboratory squeeze simulation                    tests. RSC Advances 2016, 6 (7), 5259–5269.

           http://dx.doi.org/10.1039/C5RA19618C

 

(3)      Pesek, S. L.; Lin, Y.-H.; Mah, H. Z.; Kasper, W.; Chen, B.; Rohde, B. J.; Robertson, M. L.; Stein, G. E.; Verduzco,            R. Synthesis of bottlebrush copolymers based on poly(dimethylsiloxane) for surface active                                      additives. Polymer.

           http://www.sciencedirect.com/science/article/pii/S0032386116300581

 

Lay Summary: “We developed materials that could be used as additives to modify surfaces and coatings. Adding a small quantity (1 - 5 %) can produce coatings that are much more resistant to fouling. The bases for these additives is the development of polymers with a highly branched structure. These materials are driven entropically to film surfaces and interfaces.”

 

Impact Statement:” We demonstrate a design concept for preparing surface-active polymers that can be used to modify films and interfaces.Small amounts of additive produce large changes in surface gettability, and bottlebrushes segregate rapidly during casting. This presents a new class of materials that can be used to develop antifouling and/or functional coatings."

 

(4)      Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification                membranes. Nature Reviews Materials 2016, 16018.

          http://www.nature.com/articles/natrevmats201618

 

(5)      Ben-Sasson, M.; Lu, X.; Nejati, S.; Jaramillo, H.; Elimelech, M. In situ surface functionalization of reverse                 osmosis membranes with biocidal copper nanoparticles. Desalination 388 IS -, 1–8.

           http://www.sciencedirect.com/science/article/pii/S001191641630100X

 

 

Sustainability & Safety

 

(1)      Yang, Y.; Faust, J. J.; Schoepf, J.; Hristovski, K.; Capco, D. G.; Herckes, P.; Westerhoff, P. Survey of food-                  grade silica dioxide nanomaterial occurrence, characterization, human gut impacts and fate across its                  lifecycle. Sci. Total Environ. 2016.

           http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?                                                                                                      dbfrom=pubmed&id=26874640&retmode=ref&cmd=prlinks

 

(2)      Liu, L.; Sun, M. Q.; Zhang, H. J.; Yu, Q. L.; Li, M. C.; Qi, Y.; Zhang, C. D.; Gao, G. D.; Yuan, Y. J.; Zhai, H. H.; Wei,              C.; Alvarez, P. J. J. Facet Energy and Reactivity versus Cytotoxicity: The Surprising Behavior of CdS                        Nanorods. Nano Letters 2016, 16 (1), 688–694.

           http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b04487

           http://pubsdc3.acs.org/articlesonrequest/AOR-NeqDxczgxFvnMj2bc4Ft

 

(3)      Hernandez-Viezcas, J. A.; Castillo-Michel, H.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Interactions                    between CeO2 Nanoparticles and the Desert Plant Mesquite: A Spectroscopy Approach.ACS Sustainable              Chemistry & Engineering 2016, 4 (3), 1187–1192.

           http://dx.doi.org/10.1021/acssuschemeng.5b01251

 

(4)      Zuverza-Mena, N.; Armendariz, R., Jr; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Effects of silver                          nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional                                    value.Frontiers in Plant Science 2016, 7.

           http://www.frontiersin.org/Journal/Abstract.aspx?                                                  

           s=1201&name=functional_plant_ecology&ART_DOI=10.3389/fpls.2016.00090

 

(5)      Majumdar, S.; Almeida, I. C.; Arigi, E. A.; Choi, H.; VerBerkmoes, N. C.; Trujillo-Reyes, J.; Flores-Margez, J.                P.; White, J. C.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Environmental Effects of Nanoceria on Seed                Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis. Environ. Sci. Technol. 2015, 49              (22), 13283–13293.

           http://dx.doi.org/10.1021/acs.est.5b03452

 

(6)      Mulchandani, A.; Westerhoff, P. Recovery Opportunities for Metals and Energy from Sewage                                    Sludges. Bioresource Technology 2016.     

           http://linkinghub.elsevier.com/retrieve/pii/S0960852416303698

 

 

(7)      Gilbertson, L. M.; Albalghiti, E. M.; Fishman, Z. S.; Perreault, F.; Corredor, C.; Posner, J. D.; Elimelech, M.;                 Pfefferle, L. D.; Zimmerman, J. B. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-           Cupric Oxide. Environ. Sci. Technol. 2016, 50 (7), 3975–3984.

          http://pubs.acs.org/doi/abs/10.1021/acs.est.5b05734